

Physical models for micro and nanosystems

Part 2: Mathematical background

Andras Kis

andras.kis@epfl.ch

École Polytechnique Fédérale de Lausanne (EPFL)
Electrical Engineering Institute

EPFL

Outline

- Review of vector analysis
- Operators (div, grad, curl) and associated theorems
- Some useful identities

Vector calculus

- Studies various differential operators defined on scalar and vector fields
- These are typically expressed in terms of the del operator, also known as nabla and represented with the symbol ∇
- In a 3D Cartesian system, del is defined as:

$$\nabla \equiv \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z}$$

- Note that we will be denoting unit vectors with

$\hat{x}, \hat{y}, \hat{z}$

and not

$\vec{i}, \vec{j}, \vec{k}$

or

$\vec{e}_1, \vec{e}_2, \vec{e}_3$

Vector calculus

- By applying the del operator to scalar or vector fields we can construct the four most important operations in vector calculus

		Operates on a:	The result is a:
Gradient	$grad(f) = \nabla f$	scalar	vector
Divergence	$div(\vec{F}) = \nabla \cdot \vec{F}$	vector	scalar
Curl (rotor)	$rot(\vec{F}) = \nabla \times \vec{F}$	vector	vector
Laplacian	$\Delta f = \nabla^2 f = \nabla \cdot \nabla f =$ $= div(grad(f))$	scalar	scalar

Gradient

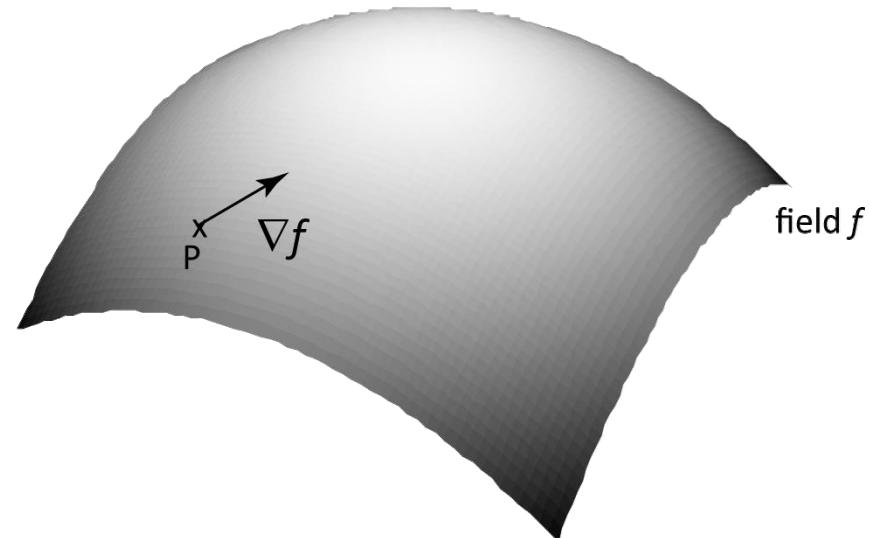
- Assume that f is a scalar field.
- Its gradient is a vector field which points in the direction of the greatest rate of increase of the scalar field, and whose magnitude is the greatest rate of change.
- It is defined by the following expression:

$$\nabla f = \lim_{V \rightarrow 0} \frac{\int_S f d\vec{a}}{V}$$

where S is the surface enclosing volume V and $d\vec{a}$ is normal to S and points outward

- In Cartesian coordinates:

$$\nabla f = \hat{x} \frac{\partial f}{\partial x} + \hat{y} \frac{\partial f}{\partial y} + \hat{z} \frac{\partial f}{\partial z}$$



$$\nabla \equiv \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z}$$

Gradient - example

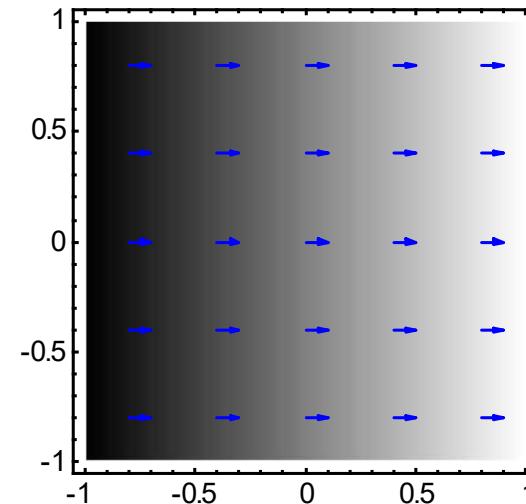
- Examples:

1. Scalar field

$$f(x, y) = 5x$$

Gradient:

$$\nabla f = \hat{x} \frac{\partial f}{\partial x} + \hat{y} \frac{\partial f}{\partial y} + \hat{z} \frac{\partial f}{\partial y} = 5\hat{x}$$

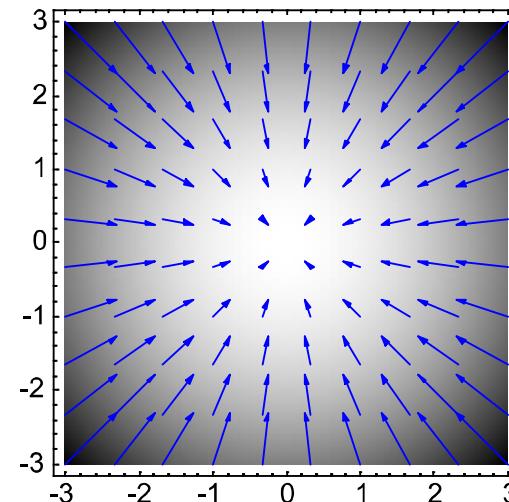


2. Scalar field

$$f = 1 - (x^2 + y^2)$$

Gradient:

$$\nabla f = -2x\hat{x} - 2y\hat{y}$$



Divergence

- Assume that \mathbf{F} is a vector field. Consider a closed surface S , enclosing a finite volume $V(S)$.

The flux of field \mathbf{F} through surface S is:

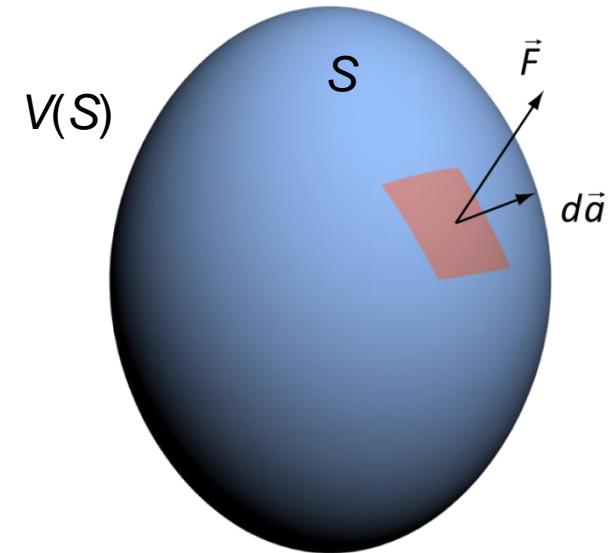
$$\Phi = \int_S \vec{F} \cdot d\vec{a}$$

The divergence of the field \mathbf{F} is the quantity Φ/V in the limit of zero volume:

$$\nabla \cdot \vec{F} = \lim_{V(S) \rightarrow 0} \frac{\int_S \vec{F} \cdot d\vec{a}}{V(S)}$$

- It is a scalar field with magnitude that corresponds to the local source or sink of the vector field – it can be thought of as “microscopic flow”
- In Cartesian coordinates:

$$\nabla \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$



$$\nabla \equiv \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z}$$

Divergence - example

- Examples:

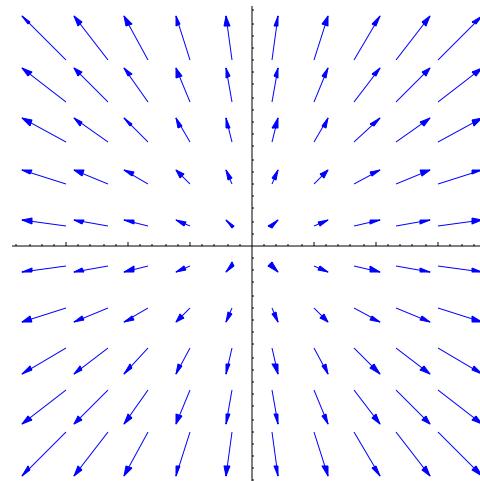
1. Vector field

$$\vec{F} = x\hat{x} + y\hat{y}$$

Divergence:

$$\nabla \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} =$$

$$= \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} = 2$$



$$\text{div} \neq 0$$

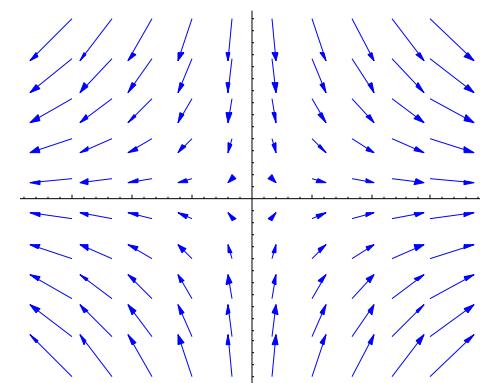
2. Field:

$$\vec{F} = x\hat{x} - y\hat{y}$$

Divergence:

$$\nabla \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} =$$

$$= \frac{\partial x}{\partial x} - \frac{\partial y}{\partial y} = 0$$



$$\text{div} = 0$$

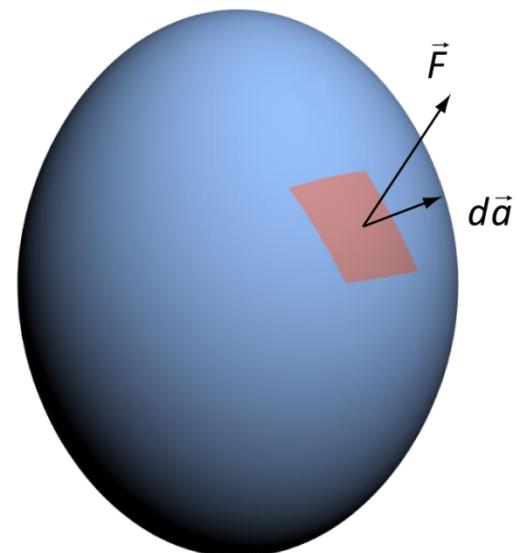
Gauss theorem (divergence theorem)

- Sometimes referred to as Ostrogradsky's theorem, Gauss-Ostrogradsky theorem, although it was first discovered by Lagrange
- Let us go back to the definition of flux and divergence:

$$\Phi = \int_S \vec{F} \cdot d\vec{a} \quad \nabla \cdot \vec{F} = \lim_{V(S) \rightarrow 0} \frac{\int_S \vec{F} \cdot d\vec{a}}{V(S)}$$

- The Gauss theorem states that the flux of the field \vec{F} through a closed surface S is equal to the integral of the field's divergence over the volume enclosed by S :

$$\int_S \vec{F} \cdot d\vec{a} = \int_{V(S)} \nabla \cdot \vec{F} dV$$



Curl (rotor)

- Assume that \mathbf{F} is a vector field. Consider a closed path C , enclosing a finite surface $S(C)$.
- The circulation Γ of field \mathbf{F} along the path C is:

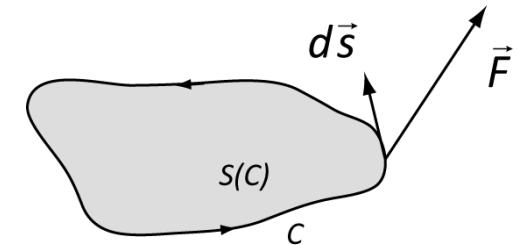
$$\Gamma = \int_C \vec{F} \cdot d\vec{s}$$

The rotation of the field \mathbf{F} is the quantity Γ/S in the limit of a small surface S :

$$(\nabla \times \vec{F}) \cdot \hat{n} = \lim_{S(C) \rightarrow 0} \frac{\int_C \vec{F} \cdot d\vec{s}}{S(C)}$$

Where \hat{n} is a unit vector normal to the surface S .

- It represents the microscopic circulation of the field \mathbf{F} , with direction following the right-hand rule



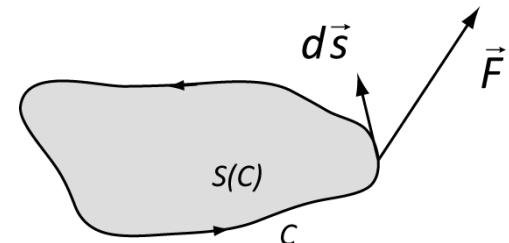
Curl in Cartesian coordinates

$$\nabla \times \vec{F} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix} =$$
$$= \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) \hat{x} + \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) \hat{y} + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \hat{z}$$

Stokes theorem

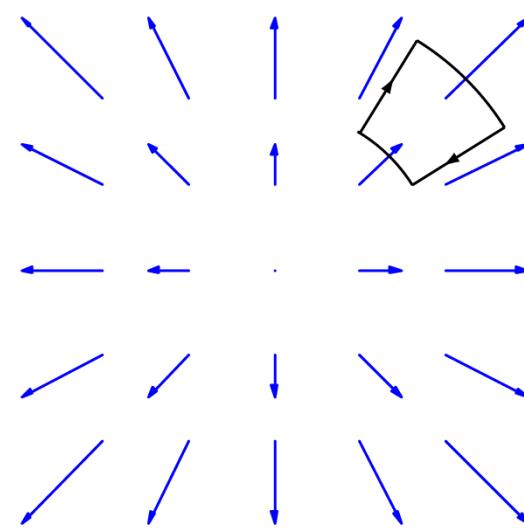
- Let us consider again the definition of circulation and rotation:

$$\Gamma = \int_C \vec{F} \cdot d\vec{s} \quad (\nabla \times \vec{F}) \cdot \hat{n} = \lim_{S(C) \rightarrow 0} \frac{\int_C \vec{F} \cdot d\vec{s}}{S(C)}$$

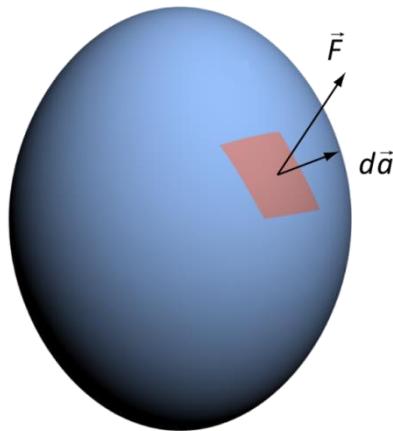


- The Stokes theorem specifies that the surface integral of the rotation over a macroscopic surface S is equal to the circulation around the circumference of the surface S :

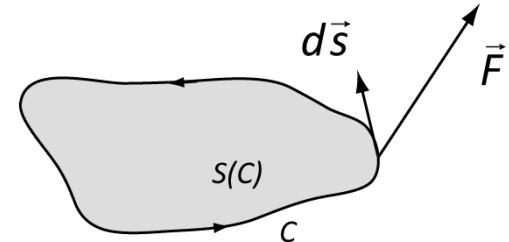
$$\int_C \vec{F} \cdot d\vec{s} = \int_{S(C)} (\nabla \times \vec{F}) \cdot d\vec{a}$$



Gauss and Stokes theorem



Flow $\Phi = \int_S \vec{F} \cdot d\vec{a}$



Circulation $\Gamma = \int_C \vec{F} \cdot d\vec{s}$

Divergence $\nabla \cdot \vec{F} = \lim_{V(S) \rightarrow 0} \frac{\int_S \vec{F} \cdot d\vec{a}}{V(S)}$

Curl $(\nabla \times \vec{F}) \cdot \hat{n} = \lim_{S(C) \rightarrow 0} \frac{\int_C \vec{F} \cdot d\vec{s}}{S(C)}$

$$\int_S \vec{F} \cdot d\vec{a} = \int_{V(S)} \nabla \cdot \vec{F} dV$$

Gauss theorem

$$\int_C \vec{F} \cdot d\vec{s} = \int_{S(C)} (\nabla \times \vec{F}) \cdot d\vec{a}$$

Stokes theorem

Homework assignment

- Please refresh your knowledge on the subjects of:
 - Combination of operators
- Test your new/old knowledge by solving the following exercise

For the vector field $\vec{F} = 2y\hat{x} + z^2\hat{y} - xy\hat{z}$ calculate the following quantities:

a) $\nabla \cdot \vec{F}$

b) $\nabla \times \vec{F}$

c) $\nabla \cdot (\nabla \times \vec{F})$

d) The integral $\int_S (\nabla \times \vec{F}) d\vec{A}$ for any closed surface S.

... and submit your results via moodle (exercise 1)