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Outline

Review of vector analysis

Operators (div, grad, curl) and associated theorems

Some useful identities



Vector calculus

Studies various differential operators defined on scalar and vector fields

These are typically expressed in terms of the del operator, also known as
nabla and represented with the symbol V

In a 3D Cartesian system, del is defined as:
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Vector calculus

By applying the del operator to scalar or vector fields we can construct the
four most important operations in vector calculus

Operateson a: Theresultis a:
Gradient  grad(f)=Vf scalar vector
Divergence div(ﬁ) —V-F vector scalar
Curl (rotor) rot(l:") =V x I:" vector vector
Laplacian Af — sz -V. Vf — scalar scalar

=divigrad(f))



Gradient

Assume that fis a scalar field.

Its gradient is a vector field which
points in the direction of the greatest
rate of increase of the scalar field, and
whose magnitude is the greatest rate
of change.

It is defined by the folowing expression:
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where Sis the surface enclosing volume V arda is normalto Sand points
outward

Vf =Ilim
V-0

In Cartesian coordinates:
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Gradient - example

Examples:
1. Scalar field  _
f(x,y)="5x R
Gradient: |
~Of .Of .0 n
Vf:x—f+y—f+z—f:5x n
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2. Scalar field

f=1-(x"2+y"2)

Gradient:
Vf =-2xx—-2yy




Divergence

Assume that F is a vector field. Consider a
closed surface S, enclosing a finite volume

V(S).
The flux of field F through surface Siis:
O=|F-da

The divergence of the field F is the quantity (I)/V
in the limit of zero volume:

jF -da

It is a scalar field with magnitude that corresponds to the local source or sink

of the vector field — it can be thought of as “microscopic flow*
In Cartesian coordinates:
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Divergence - example

Examples:
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Gauss theorem (divergence theorem)

Sometimes referred to as Ostrogradsky's theorem, Gauss-Ostrogradsky
theorem, although it was first discovered by Lagrange

Let us go back to the definition of flux and divergence:

O=|F-di V-F=

The Gauss theorem states that the flux of the field
F through a closed surface S is equal to the

integral of the field’s divergence over the volume
enclosed by S:

Lﬁ-da= V. FdV

v(s)




Curl (rotor)

Assume that F is a vector field. Consider a
closed path C, enclosing a finite surface S(C).

The circulation I of field F along the path C is:

F:Lﬁ-dE

The rotation of the field F is the quantity F/S in
in the limit of a small surface S:

L F-ds
(VxF)-n: lim =<
se)->0  §(C)

Where n IS a unit vector normal to the surface
S.

It represents the microscopic circulation of
the field F, with direction following the
right-hand rule
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Curlin Cartesian coordinates
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Stokes theorem

Let us consider again the definition of circulation and rotation:

F:J.Cﬁ'df (Vxl?)

The Stokes theorem specifies that the surface integral of the rotation over a
macroscopic surface S is equal to the circulation around the circumference

of the surface S:

jcﬁ-c@

-n= lim

jcﬁ-dE:L(C)(VXF’)-da

rot=0



Gauss and Stokes theorem

3 | F-da
Divergence V.F = |im =

V-FdV

v(s)

Lﬁ-dﬁz

Gauss theorem

E
C
Circulation FZJ-Cﬁ-df
N | F-ds
Curl (VxF)-n: lim =<
sc)»0  §(C)

jcﬁ-dE:L(C)(vXﬁ)-da

Stokes theorem
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Homework assignement

Please refresh your knowledge on the subjects of:
— Combination of operators

Test your new/old knowledge by solving the following exercise

For the vector field F = 2y% + z?9y — xyZ calculate the following quantities:
a)V-F
b)V X F
c)V-(VxF)

d) The integral fs (\7 X ﬁ)d/f for any closed surface S.

... and submit your results via moodle (exercise 1)
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